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Abstract
The maps of magnitudes of the axial crystal-field parameters, Bk0, for
k = 2, 4, 6, which enter the HCF parametrizations as functions of the
z-axis spherical coordinates of the relevant reference frames are identical for
all equivalent parametrizations with accuracy to the definite rotations of these
frames. Therefore, it is possible to reduce all tested HCF parametrizations
to the one common reference frame providing that one can find for all these
parametrizations the same distinguished space direction. This condition is
fulfilled by the three z-axes of the frames for which the axial parameter,
Bk0 (where k = 2, 4, 6 corresponds to the component multipoles), reaches
its maximal value max Bk0 �

[ ∑
m|Bkm|2]1/2

. These maxima can serve as
convenient discriminants of the entire classes of equivalent parametrizations.
Based on the distinguished directions and transformational properties of HCF

parametrizations with respect to the reference frame rotations, the paper
presents the method how to effectively verify the equivalence of these
parametrizations and postulates the way of their standardization. This method
can be applied to all point symmetries of the central ion, although it seems to
be particularly useful and recommended for triclinic symmetry (C1, Ci).

PACS number: 71.70.Ch

1. Introduction

The parametrizations of the crystal-field Hamiltonians HCF available from a fitting
experimental data procedure always refer to some specific reference frames. However,
the space orientation of these frames, e.g. relative to the crystallographic system, is
principally unknown. Additionally, there exist crystal-field potentials of such symmetries
that the corresponding parametrization patterns remain the same for various reference
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frames, whereas the sets of the crystal-field parameters (CFPs) are different. These
parametrizations, though seemingly different, are equivalent since they can be identified
with each other through appropriate rotations of their reference frames. Therefore, there
is a persistent demand to reduce such parametrizations to a common reference frame, i.e.
to give a clear method of verification of their equivalence and postulate an unambiguous
standardization.

Among the above-mentioned HCF, a particular position take the potentials of the triclinic
symmetry (C1 or Ci point symmetry). This peculiarity results from the fact that they have
no crystallographically distinguished reference frame (the symmetry adapted system), or in
other ways, each and every reference frame is equivalently distinguished in this case. Hence,
the question how to choose the reference frame common for all the tested parametrizations
becomes crucial.

The conventional methods of standardization of HCF parametrizations, based on algebraic
symmetry of the characteristic polynomial of the HCF matrix introduced by Clark [1] and
developed by Rudowicz and Bramley for rhombic [2], and monoclinic systems [3], as well
as other symmetries admitting complex-conjugate CFPs [4], do not seem to guarantee any
progress while dealing with HCF of C1 and Ci point symmetries.

Here in the paper a quite different approach is proposed. It is based on the special
discriminant established separately for each of the 2k-pole components (k = 2, 4, 6) in HCF,
i.e. on the maximal value of the axial parameter, max Bk0. These discriminants being the
same for the entire class of the equivalent parametrizations yield directly the distinguished
orientations of the relevant reference frames. In consequence, we have at our disposal three
distinguished space directions for the three 2k-poles, respectively.

Using the rotational transformation [5, 6] separately for each HCF multipole (k = 2, 4, 6),
we are able to reduce all the tested parametrizations to a common reference frame. According
to fitting procedures this shared frame, which is specific for a chosen 2k-pole, obviously refers
to the whole parametrization. Thus, comparing two different HCF parametrizations defined
within two certain unknown reference frames, we are able to obtain their forms expressed
within the common reference frame. It allows us to verify their equivalence and standardize
them by taking the max Bk0 value for the Bk0 CFP. It makes no difference that the explicit
space orientation of the common frame remains unknown.

Naturally, there are no limitations in applying the above method of verification and
standardization of HCF parametrizations to other central-ion symmetries, however it seems to
be particularly advisable for the triclinic symmetry.

2. Basic theoretical approach

2.1. The rotational transformation of HCF parametrizations

We need the transformational properties of any HCF parametrization, [Bkm], induced by the
reference frame rotation. Throughout the paper the tensor (Wybourne) notation [7] for the
Bkm CFPs is consistently used (Bkm = Re Bkm + i Im Bkm; B∗

km = (−1)mBk,−m). In the most
general case three-dimensional rotations of the reference frame, O+(3) group, induce the
transformations of (2k + 1) components (constituting the 2k-pole) according to the kth-order
irreducible representations of the rotation group D(k)(α, β, γ ), where (α, β, γ ) are the three
Euler angles [5, 6].

Representing the set of 2k + 1 CFPs, including one real axial parameter Bk0 and k pairs
of complex-conjugate parameters, by a one-column vector, the effect of the rotation can be



On standardization of crystal-field Hamiltonians parametrization 6083

described by means of the following matrix equation,


D(k)
−k,−k D(k)

−k,−k+1 . . . D(k)
−k,0 . . . D(k)

−k,k

...
...

...
...

D(k)
0,−k D(k)

0,−k+1 . . . D(k)
0,0 . . . D(k)

0,k

...
...

...
...

D(k)
k,−k D(k)

k,−k+1 . . . D(k)
k,0 . . . D(k)

k,k




·




Bk,−k

...

Bk,0

...

Bk,k




=




B ′
k,−k

...

B ′
k,0
...

B ′
k,k




, (1)

where the matrix elements D(k)
mn(α, β, γ ) are defined as [5, 6]

D(k)
mn(α, β, γ ) = exp i(mγ + nα)

[
(k + m)!(k − m)!

(k + n)!(k − n)!

] 1
2 ∑

σ

(
k + n

k − m − σ

)

×
(

k − n

σ

)
(−1)k−m−σ

(
cos

β

2

)2σ+m+n (
sin

β

2

)2k−2σ−m−n

. (2)

The sum in the above expression is extended for those values of σ for which both Newton
symbols hold their sense.

Since the description of real crystal-field effects must be independent of the reference
system choice, all the HCF parametrizations related to each other by equation (1), as [Bkm]
and [B ′

km], are equivalent. Owing to the unitarity of transformations D(k)(α, β, γ ), the square

roots of the sums of the CFPs moduli squares, Mk = [ ∑
m|Bkm|2]1/2

, are their invariants.
Now, within these various reference frames related to the original one by the above-

mentioned rotations the axial CFP Bk0 takes, according to equation (1), the value

B ′
k0 =

k∑
m=−k

D(k)
0m(α, β, 0)Bkm =

k∑
m=−k

C(k)
m (β, α)Bkm, (3)

since D(k)
0m(α, β, 0) = C(k)

m (β, α) [5, 6], and where the Bkm CFPs correspond to the original
reference frame.

2.2. Maximal values of Bk0 CFPs for k = 2, 4, 6 in parametrized HCF

Since for the triclinic symmetry there is no crystallographically distinguished direction, one
may suspect that the standardization of equivalent parametrizations of the involved HCF is
principally impossible to obtain. Fortunately, this pessimistic conclusion is not true. It turns
out that for each separate 2k-pole component of the HCF, the maximal magnitude of Bk0,
max Bk0 (that for the particularly orientated reference frame), does not generally reach the
modulus value Mk = [ ∑k

m=−k|Bkm|2]1/2
. Therefore, the max Bk0 can be treated as a well-

defined discriminant of the equivalent HCF parametrizations. Similarly, the minimal value of
Bk0, minBk0, could be used. The use of max|Bk0| magnitude needs to respect the Bk0 sign.

Knowing the spherical coordinates (ᾱk, β̄k) of the distinguished z-axis (related to max Bk0)
for all the tested HCF parametrizations, one may reduce them to the one common reference
frame, consequently proving their equivalence, and finally standardize them by taking the
max Bk0 as the Bk0 for a fixed k. For HCF of C1 or Ci point symmetries no other distinguished
space direction comes to mind.

The maximal magnitudes of the axial CFPs, max Bk0, along with the orientations of the
relevant z-axes, (ᾱk, β̄k), can be found either by means of the extremum calculus in which we
are looking for the zero points of the partial derivatives of the right side of equation (3) with
respect to α and β rotation angles, or directly from theBk0(α, β) maps within the whole range
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of the angles 0 � α � 2π and 0 � β � π , identifying the highest summits (or the deepest
valleys).

Based on max Bk0 points on the maps, we can find the three respective distinguished
directions defined within the same initial reference frame. Then, the mutual orientation
of the distinguished z-axes can be found from the expression for the angle between the
vectors knowing their components. Since the unit vector along the distinguished z-axis
of 2k-pole has, within the initial (Cartesian) reference frame, the following components
(sin β̄k cos ᾱk, sin β̄k sin ᾱk, cos β̄k), the angle ωkl between the distinguished z-axes of 2k-
and 2l-poles can be calculated as

ωkl = arccos[sin β̄k sin β̄l cos ᾱk cos ᾱl + sin β̄k sin β̄l sin ᾱk sin ᾱl + cos β̄k cos β̄l]. (4)

If for one of the component multipoles, e.g. the 2k-pole, the initial frame is optimal (i.e.
sin β̄k = 0), then ωkl = β̄l .

3. The standardization procedure

3.1. Mapping of the Bk0(α, β) CFPs as a function of the reference frame rotation angles

The plots of the Bk0 maps for all possible orientations of the related reference frame z-axis
are directly feasible by using basic computational programs like MathCad. In the case of the
triclinic symmetry, due to the lack of any symmetry elements, the maps ought to be plotted
within the full range of the angles, 0 � α � 2π, 0 � β � π . As an example, figure 1 shows
three such maps for one out of two crystallographically different U4+ ions in UF4, i.e. that of
C1 symmetry [8, 9]. The solid lines on the maps (figure 1) refer to the constant values of the
Bk0 (i.e. the iso-Bk0 lines).

Eight out of twelve U4+ ions in the UF4 unit cell possess C1 site symmetry. The complete
set of 27 CFPs (thoroughly given in the last column of table IV in [9]) was estimated for
the simple one-parameter version of the angular overlap model (AOM) [10], where eσ =
1800 cm−1, eσ /eπ = 2.88.

These graphical representations lead to two observations worth noting:

• The common feature of these three cases is the max|Bk0| and the modulus Mk proximity:
max|Bk0|/Mk amounts to 1448

1501 = 0.964, 7205
7755 = 0.929, 4011

4574 = 0.877, for k = 2, 4, 6,
respectively.

• The angles between the distinguished directions (equation (4)) are: ω24 = 14.3◦, ω26 =
13.2◦, ω46 = 1.6◦; so the directions are fairly focused especially those for the 24- and
26-poles which are almost collinear.

Taking into account these two facts, one can conclude that the HCF of the U4+(C1) ion in
UF4 has distinctly axial character. It is not surprising since this crystal-field potential can be
roughly approximated by that of the Archimedean antiprism symmetry (D4d ) with a pure axial
HCF [11, 12]. The approximate 8̄ axis stands for the average distinguished direction. Thus,
the model considered above gains convincing ground.

To obtain the maps we begin with an initial, in general unknown, reference system
in which the considered HCF parametrization [Bkm] is defined. Then, we carry out all
rotational transformations according to equation (3). The third Euler angle γ , inessential to this
procedure, is assumed to be zero: the rotation by γ does not affect the axial Bk0 CFPs.

In order to be able to compare the Bk0(α, β) maps for any two different parametrizations,
i.e. for any two different reference frames, one needs the trigonometrical relations between
the angle spherical coordinates of unit radius vectors in both the frames. By analogy, it can be
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(a)

Figure 1. The maps of values of B20 (a), B40 (b) and B60 (c) CFPs (in cm−1) for UF4(C1):UF4 [9]
as functions of the reference frame rotation angles α and β within their ranges 0 � α � 2π, 0 �
β � π . The pairs of characteristic max|Bk0| are denoted by the crosses with their exact values
(bold-faced).

referred to the relationship between the latitude and longitude of any point on the Earth within
the conventional coordinate system (the polar axis, Greenwich meridian) and those within
another system based on a new ‘polar axis’ and a new zero-meridian.

Let us denote the coordinates of a chosen radius vector in the initial frame as (θ, ϕ) and
then rotate the frame by (α, β, 0). Between the coordinates of the considered point within the
transformed (θ ′, ϕ′) and initial (θ, ϕ) frames, the following relationships hold:

θ ′ = arccos[−sin β cos ϕ sin θ + cos β cos θ ]

ϕ′ = arctan

[
sin α cos β cos ϕ sin θ + cos α sin ϕ sin θ − sin α sin β cos θ

cos α cos β cos ϕ sin θ − sin α sin ϕ sin θ − cos α sin β cos θ

]
. (5)

Knowing for the corresponding points (e.g. for the max Bk0) (θ, ϕ) from the first map, and
(θ ′, ϕ′) from the second map, the angles of the mutual rotation of the frames (α, β) can be
found. The maps Bk0(α, β) reflect to some extent the central-ion point symmetry. Namely,
such a map orientated with respect to an accidental z-axis of its initial reference frame
(according to the choice of the (0, 0) point) cannot straightforwardly reveal the central-ion
point symmetry. However, the multiplicity of identical Bk0 values occurring due to the
present axes and planes of symmetry has to be the same for all other orientations of the
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(b)

Figure 1. (Continued.)

reference frame including the symmetry adapted system. When β = 0, then the α angle
becomes inessential for an arbitrary choice of the reference frame. Consequently, all points
of the α-axis correspond to the (0, 0) point, and everywhere along this axis Bk0 = const. It
manifests itself on the maps as a constant height of the surface plot for β = 0, and similarly
for β = π .

Since the sign of Bk0 CFPs does not depend on the sense of the reference system z-axis,
their identical values occur for each pair of points (α, β) and (α + π, π − β) (see figure 1).
This property can be proven based on equation (3). In other words, the Bk0 CFPs depend only
on the even powers of the z coordinates of the ligands (or charge density) in the central-ion
surroundings. This imposes the characteristic symmetry of the maps (figure 1) in spite of
the lack of any crystallographic elements of symmetry. Thus, even in the case of triclinic
symmetry the corresponding pairs of Bk0 points occur on the maps. If the z-axis of the
applied reference frame is the C∞v symmetry axis, then all the iso-Bk0 lines on the maps
are vertical, straight lines parallel to the α-axis (β = const) . Finally, a constant function,
Bk0(α, β) = const, would correspond to the spherical symmetry of the central ion.

After the above-described reduction of any two considered maps to the two coordinate
frames sharing the same z-axis, the subsequent rotation of one of them about this z-axis which
leads to their total overlapping (and which corresponds to the third Euler angle γ ) is equivalent
to the parallel shift of the transformed map along its α-axis. In this way, having the maps
for two different but equivalent HCF parametrizations one can reduce them to the common
reference frame, showing their compatibility.
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(c)

Figure 1. (Continued.)

3.2. Verification of the HCF parametrization equivalence

Let us assume that one needs to compare two different parametrizations
[
B

(1)
km

]
and

[
B

(2)
km

]
of

the same HCF at a triclinic symmetry site. These parametrizations are obtained from fitting
certain available experimental data. Eliminating one out of the 27 CFPs nominally assigned
to this symmetry (e.g. Im B21) by means of the virtual rotations of the reference systems
(corresponding to

[
B

(1)
km

]
and

[
B

(2)
km

]
, respectively), about their z-axes by strictly defined angles

χ(i) = arctan
(
Im B

(i)
21

/
Re B

(i)
21

)
, where i = 1, 2, the applied parametrization pattern should

be based on the 26 independent CFPs.
Although the compared HCF parametrizations describe the same physical reality, they

differ from each other since they are defined within different reference frames. However, only
those HCF parametrizations which are mutually related through equation (1) belong to the one
class of equivalent parametrizations. Unfortunately, we do not know the mutual orientation of
the involved reference frames and this prevents us from verifying their equivalence in such a
direct manner.

Therefore, let us consider, in detail, the conditions which have to be fulfilled by the
equivalent HCF parametrizations. It may happen that their inequivalence (if any) is revealed
already at these preliminary stages of the investigation.

• Since the individual 2k-poles (k = 2, 4, 6) in HCF become transformed under the separate
irreducible representations D(k) of the three-dimensional rotation group, the moduli of the
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particular multipoles, Mk = [∑
m|Bkm|2]1/2

, have to be the invariants of these rotations.
Thus, for both the considered HCF parametrizations they have to be the same. This is the
first necessary condition, but not a sufficient one, of their equivalence.

• The maps of Bk0(α, β), k = 2, 4, 6, for both the HCF parametrizations after their
appropriate conversion into a common reference system have to be identical. The
magnitude max Bk0 � Mk can serve as a convenient discriminant of the reconciliation
procedure.

• The mutual orientation of the component 2k-poles has to be identical. This refers not only
to the distinguished zk-axes (the z-axes for which Bk0 reach their maxima) but also to the
x- and y- axes in the planes perpendicular to the distinguished z-axes.

The proposed verification procedure of the equivalence of two HCF parametrizations (this is
the transitive property) can follow the scheme:

1. The moduli Mk, k = 2, 4, 6, for both the parametrizations are calculated. They have to
be equal for the equivalent parametrizations.

2. The maps of Bk0(α, β), k = 2, 4, 6, within the whole ranges of the angles 0 � α � 2π

and 0 � β � π are plotted. Based on these maps the top points
(
ᾱ

(1)
k , β̄

(1)
k

)
,
(
ᾱ

(2)
k , β̄

(2)
k

)
,

for max B
(1)
k0 and max B

(2)
k0 , respectively, are found. For the equivalent parametrizations

the relationship max B
(1)
k0 = max B

(2)
k0 must hold. This constitutes the second criterion

of the equivalence. Additionally, the coordinates of the corresponding zk-axes, i.e.(
ᾱ

(1)
k , β̄

(1)
k

)
and

(
ᾱ

(2)
k , β̄

(2)
k

)
, allow us, by means of equation (4), to find out the mutual

space orientation of the distinguished zk-axes of the three component multipoles. This
is only a roughly established orientation of the reference systems ignoring their rotations
about these distinguished axes. These orientations have to be the same for both examined
parametrizations if they are to be equivalent. This may be treated as the third criterion of
the equivalence.

3. The initial (unknown) reference frame relevant to the first parametrization
[
B

(1)
km

]
is rotated

by
(
ᾱ

(1)
k , β̄

(1)
k , 0

)
for a chosen k (one out of the three) to point its z-axis along the

distinguished direction. As a consequence of this rotation, the new transformed set of
all 27 CFPs of the first parametrization, [B ′(1)

km ], is obtained according to equation (1).
Similarly, the reference frame relevant to the second parametrization,

[
B

(2)
km

]
, is rotated

by
(
ᾱ

(2)
k , β̄

(2)
k , 0

)
in order to point its z-axis in the same distinguished direction. As

previously, the second transformed complete set of 27 CFPs,
[
B

′(2)
km

]
, is obtained. Let

us emphasize that both the parametrizations
[
B

′(1)
km

]
and

[
B

′(2)
km

]
correspond to the two

reference frames with the same z-axis. If they are to be equivalent, they can differ from
each other only in their off-axial CFPs in such a way that a plane rotation of, e.g., the
second frame about the common z-axis by a certain angle γ̄

(2)
k leads to the total identity

of both the parametrizations. The transformation of
[
B

′(2)
km

]
as a result of the last rotation

has the form [
B

′′(2)
km

] = [
B

′(2)
km

]
exp

(
imγ̄

(2)
k

)
, (6)

where [
B

′′(2)
km

] ≡ [
B

′(1)
km

]
or

[
B

′′(2)
km

] ≡ [
(−1)mB

′(1)∗
km

]
, (7)

i.e. for all k and m; the second equation refers to the opposite sense of the z-axis.
Hence, based on equations (6) and (7), the γ̄

(2)
k angle for the equivalent parametrizations

can be found directly.
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4. There still remains the last step which is the elimination, at our own request, one out of the
Im Bkm CFPs, e.g. the Im B21. This is attainable transforming the last parametrization, i.e.[
B

′(1)
km

] ≡ [
B

′′(2)
km

]
, due to the rotation (0, 0, χ21), where χ21 = arctan(Im B21/Re B21).

4. Complementary comments

The idea underlying the method presented is the rotation invariant defined for any entire
class of equivalent HCF parametrizations instead of a single parametrization. Therefore, the
postulated invariants, max Bk0, can be treated as a generalization of the previously introduced
crystal-field invariants [13] and exploited in the case of individual parametrizations [14, 15].
The examples of such single parametrization invariants are the Mk magnitudes, the crystal-
field strength parameters sk , as well as the angles between the distinguished directions of
component multipoles in HCF. In fact they can be helpful in verification of compatibility
and reliability of HCF parametrizations, but their utility is rather limited: for instance the sk

parameters render the shifts of the centres of gravity of the free-ion levels caused by J -mixing
or the second moment of Stark levels in the absence of J -mixing [13].

In ab initio or model calculations of HCF parametrizations, the relevant axis system is
a priori assumed and all the CFPs admitted by group theory are unambiguously determinable—
27 in the case of triclinic HCF’s. This is not the case, however, for parametrizations of fitting
origin. As results from the analysis of HCF algebraic symmetry, not all the admissible CFPs
can be determined unambiguously [1–4], and in consequence several, and often an infinite
number of equivalent parametrizations coexist. The corresponding axis systems called by
Rudowicz [16] ‘nominal’ ones remain unknown, but it does not prevent us from rotating them.
To obtain reliable HCF parametrization, we also face the next problem. The number and
choice of independent CFPs (forming the fitting pattern) play a crucial role in the procedure.
In addition to this comes the adjustment of the free-ion parameters with the CFPs.

By means of rotation of any initial (nominal) axis system by appropriate Euler angles, one
can always reduce the fitting pattern by one to three parameters for the specific orientations
of the axis system [3, 4, 17]. However, such procedures should be supplemented by the
convention clearly stating the CFPs to be removed. An essential reduction in the number
of independent CFPs can be achieved only by interrelating the involved CFPs based on the
superposition model (SM) [18], the angular overlap model (AOM) [19], or using, e.g., the
point charge model (PCM) Bkq/Bk0 ratios [20].

Unfortunately, as is seen from the literature data [17, 20] the reliable HCF parametrization
of triclinic symmetry constitutes a difficult task indeed. In order to ensure compatibility and
reliability of the parametrizations, a broad basis treatment [16, 20] is required. Fortunately,
such tools as the computer package CST (conversions, standardization and transformations)
[16] and the multipole correlated fitting technique (MCFT) [16] come to our aid.

5. Summary

The
(
ᾱ

(1)
k , β̄

(1)
k , 0

)
rotation of the reference frame relative to the first parametrization[

B
(1)
km

]
leads to the

[
B

′(1)
km

]
parametrization, and analogously, the

(
ᾱ

(2)
k , β̄

(2)
k , γ̄

(2)
k

)
rotation

of the reference frame relative to the second parametrization
[
B

(2)
km

]
leads to the

[
B

′′(2)
km

]
parametrization. For the equivalence of the

[
B

(1)
km

]
and

[
B

(2)
km

]
parametrizations the identity of

the
[
B

′(1)
km

]
and

[
B

′′(2)
km

]
parametrizations is necessary.
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Thus, the method of reduction of two different but corresponding to the same HCF

parametrizations to the common reference frame is proposed. It enables us to verify their
equivalence and introduce the standardization which consists in taking the max Bk0 as the Bk0

CFP (for a fixed k). So, there are three possibilities (k = 2, 4, 6) to choose the distinguished
axis as the z-axis. General standardization should be defined for commonly fixed k, e.g. k = 2.
Then, the distinguished axis of the quadrupole component of the HCF would be the z-axis of
the standard reference system.
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